Module pysimt.layers.positionwise_ff
Positionwise feed-forward layer.
Expand source code
"""Positionwise feed-forward layer."""
from torch import nn
from . import FF
from .transformers import BaseSublayer
class PositionwiseFF(nn.Module):
"""Positionwise Feed-forward layer.
Arguments:
Input:
Output:
"""
def __init__(self, model_dim, ff_dim, activ='gelu', dropout=0.1):
"""
Creates a PositionwiseFF.
:param model_dim: The model dimensions.
:param ff_dim: The feedforward dimensions.
:param activ: The activation function. Default: gelu
:param dropout: The amount of dropout. Default: 0.1
"""
super().__init__()
self.model_dim = model_dim
self.ff_dim = ff_dim
self.activ = activ
# Create the layers
self.layers = nn.Sequential(
FF(self.model_dim, self.ff_dim, activ=self.activ),
nn.Dropout(dropout),
FF(self.ff_dim, self.model_dim, activ=None),
)
def forward(self, x):
return self.layers(x)
class PositionwiseSublayer(BaseSublayer):
def __init__(self, model_dim, ff_dim, ff_activ='gelu', dropout=0.1, is_pre_norm=False):
"""
Creates a PositionwiseSublayer.
:param model_dim: The model dimensions.
:param ff_dim: The dimensions of the feed forward network.
:param ff_activ: The activation of the feed forward network.
:param dropout: The dropout rate.
:param is_pre_norm: Whether the layer type is pre_norm. Default: True.
"""
super().__init__(model_dim, dropout, is_pre_norm)
self.feed_forward = PositionwiseFF(model_dim, ff_dim, ff_activ, dropout=dropout)
def forward(self, x, mask=None):
"""
Performs a forward pass over the PositionwiseSublayer.
:param x: The input x.
:param mask: The input mask.
:return: The output from the forward pass of the PositionwiseSublayer.
"""
residual = x
x = self.apply_pre_norm_if_needed(x)
x = self.feed_forward(x)
x = self.apply_residual(residual, x)
x = self.apply_post_norm_if_needed(x)
return x
Classes
class PositionwiseFF (model_dim, ff_dim, activ='gelu', dropout=0.1)
-
Positionwise Feed-forward layer.
Arguments:
Input:
Output:
Creates a PositionwiseFF. :param model_dim: The model dimensions. :param ff_dim: The feedforward dimensions. :param activ: The activation function. Default: gelu :param dropout: The amount of dropout. Default: 0.1
Expand source code
class PositionwiseFF(nn.Module): """Positionwise Feed-forward layer. Arguments: Input: Output: """ def __init__(self, model_dim, ff_dim, activ='gelu', dropout=0.1): """ Creates a PositionwiseFF. :param model_dim: The model dimensions. :param ff_dim: The feedforward dimensions. :param activ: The activation function. Default: gelu :param dropout: The amount of dropout. Default: 0.1 """ super().__init__() self.model_dim = model_dim self.ff_dim = ff_dim self.activ = activ # Create the layers self.layers = nn.Sequential( FF(self.model_dim, self.ff_dim, activ=self.activ), nn.Dropout(dropout), FF(self.ff_dim, self.model_dim, activ=None), ) def forward(self, x): return self.layers(x)
Ancestors
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var training : bool
Methods
def forward(self, x) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, x): return self.layers(x)
class PositionwiseSublayer (model_dim, ff_dim, ff_activ='gelu', dropout=0.1, is_pre_norm=False)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Creates a PositionwiseSublayer. :param model_dim: The model dimensions. :param ff_dim: The dimensions of the feed forward network. :param ff_activ: The activation of the feed forward network. :param dropout: The dropout rate. :param is_pre_norm: Whether the layer type is pre_norm. Default: True.
Expand source code
class PositionwiseSublayer(BaseSublayer): def __init__(self, model_dim, ff_dim, ff_activ='gelu', dropout=0.1, is_pre_norm=False): """ Creates a PositionwiseSublayer. :param model_dim: The model dimensions. :param ff_dim: The dimensions of the feed forward network. :param ff_activ: The activation of the feed forward network. :param dropout: The dropout rate. :param is_pre_norm: Whether the layer type is pre_norm. Default: True. """ super().__init__(model_dim, dropout, is_pre_norm) self.feed_forward = PositionwiseFF(model_dim, ff_dim, ff_activ, dropout=dropout) def forward(self, x, mask=None): """ Performs a forward pass over the PositionwiseSublayer. :param x: The input x. :param mask: The input mask. :return: The output from the forward pass of the PositionwiseSublayer. """ residual = x x = self.apply_pre_norm_if_needed(x) x = self.feed_forward(x) x = self.apply_residual(residual, x) x = self.apply_post_norm_if_needed(x) return x
Ancestors
- BaseSublayer
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var training : bool
Methods
def forward(self, x, mask=None) ‑> Callable[..., Any]
-
Performs a forward pass over the PositionwiseSublayer. :param x: The input x. :param mask: The input mask. :return: The output from the forward pass of the PositionwiseSublayer.
Expand source code
def forward(self, x, mask=None): """ Performs a forward pass over the PositionwiseSublayer. :param x: The input x. :param mask: The input mask. :return: The output from the forward pass of the PositionwiseSublayer. """ residual = x x = self.apply_pre_norm_if_needed(x) x = self.feed_forward(x) x = self.apply_residual(residual, x) x = self.apply_post_norm_if_needed(x) return x
Inherited members