Module pysimt.layers.attention.uniform
Expand source code
# -*- coding: utf-8 -*-
import torch
class UniformAttention(torch.nn.Module):
"""A dummy non-parametric attention layer that applies uniform weights."""
def __init__(self):
super().__init__()
def forward(self, hid, ctx, ctx_mask=None):
alpha = torch.ones(*ctx.shape[:2], device=ctx.device).div(ctx.shape[0])
wctx = (alpha.unsqueeze(-1) * ctx).sum(0)
return alpha, wctx
Classes
class UniformAttention
-
A dummy non-parametric attention layer that applies uniform weights.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class UniformAttention(torch.nn.Module): """A dummy non-parametric attention layer that applies uniform weights.""" def __init__(self): super().__init__() def forward(self, hid, ctx, ctx_mask=None): alpha = torch.ones(*ctx.shape[:2], device=ctx.device).div(ctx.shape[0]) wctx = (alpha.unsqueeze(-1) * ctx).sum(0) return alpha, wctx
Ancestors
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var training : bool
Methods
def forward(self, hid, ctx, ctx_mask=None) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, hid, ctx, ctx_mask=None): alpha = torch.ones(*ctx.shape[:2], device=ctx.device).div(ctx.shape[0]) wctx = (alpha.unsqueeze(-1) * ctx).sum(0) return alpha, wctx