Module pysimt.layers.attention.hierarchical
Expand source code
# -*- coding: utf-8 -*-
import torch
from torch import nn
from ...utils.nn import get_activation_fn
# Libovický, J., & Helcl, J. (2017). Attention Strategies for Multi-Source
# Sequence-to-Sequence Learning. In Proceedings of the 55th Annual Meeting of
# the Association for Computational Linguistics (Volume 2: Short Papers)
# (Vol. 2, pp. 196-202). [Code contributed by @jlibovicky]
class HierarchicalAttention(nn.Module):
"""Hierarchical attention over multiple modalities."""
def __init__(self, ctx_dims, hid_dim, mid_dim, att_activ='tanh'):
super().__init__()
self.activ = get_activation_fn(att_activ)
self.ctx_dims = ctx_dims
self.hid_dim = hid_dim
self.mid_dim = mid_dim
self.ctx_projs = nn.ModuleList([
nn.Linear(dim, mid_dim, bias=False) for dim in self.ctx_dims])
self.dec_proj = nn.Linear(hid_dim, mid_dim, bias=True)
self.mlp = nn.Linear(self.mid_dim, 1, bias=False)
def forward(self, contexts, hid):
dec_state_proj = self.dec_proj(hid)
ctx_projected = torch.cat([
p(ctx).unsqueeze(0) for p, ctx
in zip(self.ctx_projs, contexts)], dim=0)
energies = self.mlp(self.activ(dec_state_proj + ctx_projected))
att_dist = nn.functional.softmax(energies, dim=0)
ctxs_cat = torch.cat([c.unsqueeze(0) for c in contexts])
joint_context = (att_dist * ctxs_cat).sum(0)
return att_dist, joint_context
Classes
class HierarchicalAttention (ctx_dims, hid_dim, mid_dim, att_activ='tanh')
-
Hierarchical attention over multiple modalities.
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code
class HierarchicalAttention(nn.Module): """Hierarchical attention over multiple modalities.""" def __init__(self, ctx_dims, hid_dim, mid_dim, att_activ='tanh'): super().__init__() self.activ = get_activation_fn(att_activ) self.ctx_dims = ctx_dims self.hid_dim = hid_dim self.mid_dim = mid_dim self.ctx_projs = nn.ModuleList([ nn.Linear(dim, mid_dim, bias=False) for dim in self.ctx_dims]) self.dec_proj = nn.Linear(hid_dim, mid_dim, bias=True) self.mlp = nn.Linear(self.mid_dim, 1, bias=False) def forward(self, contexts, hid): dec_state_proj = self.dec_proj(hid) ctx_projected = torch.cat([ p(ctx).unsqueeze(0) for p, ctx in zip(self.ctx_projs, contexts)], dim=0) energies = self.mlp(self.activ(dec_state_proj + ctx_projected)) att_dist = nn.functional.softmax(energies, dim=0) ctxs_cat = torch.cat([c.unsqueeze(0) for c in contexts]) joint_context = (att_dist * ctxs_cat).sum(0) return att_dist, joint_context
Ancestors
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var training : bool
Methods
def forward(self, contexts, hid) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code
def forward(self, contexts, hid): dec_state_proj = self.dec_proj(hid) ctx_projected = torch.cat([ p(ctx).unsqueeze(0) for p, ctx in zip(self.ctx_projs, contexts)], dim=0) energies = self.mlp(self.activ(dec_state_proj + ctx_projected)) att_dist = nn.functional.softmax(energies, dim=0) ctxs_cat = torch.cat([c.unsqueeze(0) for c in contexts]) joint_context = (att_dist * ctxs_cat).sum(0) return att_dist, joint_context